mamey o %

2 NACA'RM AQT.27

Copy 19
RM A9L27

—

At Frh—

- M:.‘a-m!
TG

C~t

RES‘EARCH MEMORANDUM

HIGESFEED AERODYNAMIC CHARACTERISTICS CF A LATERAI-CONTROL
MODEL. II - MODIFIED NACA 0012-64 SECTION WITH A
26.6-PERCENT—CHORD, PLAIN, TRAILING-EDGE AILERON;

WING UNSWEPT AND SWEPT BACK 45°
By Walter J. Krumm and Joseph L.. Anderson
Ames Aeronautical Laboratory

CLASSIFICAT!ON CAMPEEL Flg cout-
Authority._ S - . - U idey Dats L2~H-5 T
- s Cestaily.o

By-%: ---_(_--[./.-__ /o500 TG
Q SEEIENESEES N ACA LIBRARY
%gﬁﬁ‘:xﬁ.ﬁ:ﬁ LANOLEY AFROWAUTICAL LADDRATONT
mhmpz-;:lr;?wlﬁ-ﬂ-‘ !‘E,E'jMVI.

tharein, ard to United Stales cltizens of kmewa =
l‘glny:lniﬁmmdmlnmh
Srm.

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

WASHINGTON
March 15, 1950

o

m EN;'%LLASSIHED




T n 7 wNCHASSTE®

_—

NACA RM AQL27 3 1176 01425 918

NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

HIGHE-SPEED AERODYNAMIC CEARACTERISTICS OF A LATERAT~CONTROL
MODEL. ITI — MODIFIED NACA 0012-64 SECTTON WITH A
26 .6-PERCENT-CHORD, PIAIN, TRAITLING-EDGE ATIERON;
WING UNSWEPT AND SWEPT BACK 45°

By Welter J. Krumm and Joseph I.. Anderson
SUMMARY '

In order to obtaln lateral-control informatlion for use in the design
of alrcraft, wind-tunnel tests were made to determine the asrodymamic
characteristice of a semispan wing with a modified NACA 001264 sectlon
and a 26.6-percent—chord, plain, trailing—edge aileron. Results are
shown for the wing with the 0.20%9-chord line unswept and swept back 45°
and for a Mach number range from 0.40 to 0.925. Data were obtained with
the trailing-edge aileron deflscted from 0° to 15°.

The results for the unswept wing showed that the onset of trailing-
edge alleron overbalance and loss In effectivensss 4dld not occur until
approximately the Mach number of 1ift and drag divergence was reached.
The results for the wilng swept back showed that the aileron dld not ‘over—
balance or lose effectiveness up to the highest “test.Mach number (0.925).

IRTRCDUCTION

As s basls for the development of methods for adequate lateral con—
trol of high—speed airplanes, an investigation was undertaken in the Ames
16-foot high—speed wind tunnel of a lateral-control-development model.
This model consisted of a semlspan wing with an NACA 0012-6L section
fitted with a 20-percent—chord, plain, trailing-edge aileron. (See reof-
erence l.) Early in the investigetion it was found that the aileron
became overbalanced and lost effectivensss at moderate speeds anl was
therefore not suitable for a gemeral study. The trailing-edge angle was
reduced from 20.6° to 13.1° by extending the tralling edge 9 percent of
the wing chord in order to delay thils overbalance and loss in effective—
ness.
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The test resulits presented in this report are for the semispan wing -
with the modified NACA 0012-6k section and with a 26.6-percent—chord,
plain, tralling-edge alleron.

NOTATIOR

The coefficlents and symbols used in this report are defined as _ _ __;;
follows:

drag coefficient dzgg )

elleron hinge moment>

Cha aillsron binge—moment coeffliclent (
q ca b

C;, 1ift coefficlent ( 11Tt )

Cq rolling-moment ccefficlent about a longitudinal axis at the root

: rolling moment
chord parallel to the alr stream ESb )

c pltching-moment coefficlient about a lateral axls passing through the

pltching moment)

quarter polint of the mesan aerodynamlc chord ( =
Q.

CI‘G < >q,_—0
5 Q 'a?: )d=o°

c Xy
8 38, /a=0°
s
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2
aspect ratio (%—- )

speed of sound in air, feet per secomd
semispan of model, feet
aileron span parallel to the hlnge lins, feet

chord of the wing parallel to the plane of symmetry, feet

b

I 2

mean aeroiynamic chord _Q__bE_@-I , feet
.ro c dy

root-mean—square chord of aileron between hinge line and the
fres edge measured perperdicular to the hinge lins, feet

Mech number (—L
. a

2 .
dynamic pressure <Pe_ s pounds per square foot

Reynolds number (EE)
H

area of semispan model, square Teet
veloclty of the free alr stream, feet per second

spanwlse distance from wing root, feet

angle of attack of model, degrees

v o
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A increment due to alleron deflection

s alleron deflection measured in a plane normal to the hinge line,
positive when the free edge is deflected downward, degrees

K abasolute viscosity of alr in the free air stream, pound—seconds
per square foob

P mess density of air in the free air stream, slugs per cubic foot

The subscripts used denote the :t‘ollcwihg:

u uncorrected
L.E. leadlng edge
T.E. tralling edge

DESCRIPTION OF MODEL AND APPARATUS

The model was a semispan wing with the NACA 0012-64 section per—
pendicular to the 0.25-ring—chord lline as used in refersnce 1, but was
modified for these tests by extending the tralling edge 9 percent of the
wing chord. This afterportion was developed by drawlng stralght lines
tangent to the sectlon and to the trailing-edge radius. This modifica—
tion changed the reference—chord line from the 0.25~chord line to the
0.229—chord line. The coordinates for this modifled section, which was
1l percent thick, are given 1n table I. This modification reduced ths
trailing-edge angle from 20.6° to 13.1°.

Tests of the model both unswept and swept back 45° were comducted
in the Ames l6-~foot high-speed wind tunmel. The wing spar of the model
extended through the tunnel wall and faetened to the balance freme. For
the wing unswept the O. 229—chord_ line was perpendicular to the alr stream.
For the wing swept back 45° the model was rotated back about the 0.459-
root—chord point until the 0.229-chord line was 45° to the air stream.
Model geometry for the wing unswept and swept back 45° 1s listed in
table II and is shown in figure 1. A baffle (fig. 2) was installed on
the model near the tunnel wall to dilrect the leskage air from the tunnel-
wall gap away from the surface of the model.
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The wing waes fltted with a leadlng—edge allsron and a tralling—edge
aileron. The leading-eodge alleron was Installed as 18 Indicated in figure
1, but was not deflected for the tests reported here. The traliling-edge
alleron occupled 26.6 percent of the wilng chord perpeniicular to the 0.229-
chord line and extended from 0.56 of the unswept—wing semispen to the tip
and extended from 0.48 of the eswept—back-wing semispen to the tip. This
alleron was flat-sided with a radius nose ard was also unsealed. For these
tests this ailleron was deflected from 0° to 15°. There were gaps of 1/16
inch between the ailerons and the wing. The allsron was restralned by a
cantilever beam to which were glued resistance—type strain gages for the
measurement of the hings moments.

The tummel test section was modified between the tests of reference
1 and the tests of this report. This tumnnel modificatlon was made by
the addition of f£lats to the tummel walls which reduced the test—section
‘breadth to 12 feet.

CCRRECTIONS TO DATA

The test Mach numbers were corrected for the blockage effect of the
model by the method outllined in reference 2. This correction Incresased
the uncorrected Mach number sbout 1 percent at 0.80 Mach number and about
4 percent at 0.925 Mach number. The angle of attack, the drag coeffi-—
clents, and the rolling-moment coefflcients were corrected for the effects
of the tunnsel walls by the method outlined in referemce 3. These correc—
tlons differ from those of reference 1 because of the changs in the sgize
of the tumnel test sectlon after the tests of reference 1. The span load
distributions for a Mach number of 0.80, as determined from statlc pres—
sure measurements, were used as a basgle for these correctioms.

The corrections were applled to the data as follows:
For the wing unswept:

@ =a,; + 0.6210L

p

2
cDu + 0.009th

For the wing swept back 45°:

aQ = U-u + 0'619011
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Cp = Cp, + 0.0090Ct?

CZ = 0-8920111

No corrections were made for the effect of the eapproximately 3—inch—thick
tunnel-wall boundary layer passing over the model. No correctlons were
made for the effects of elastic deformation of. the aileron or wing umder
load as the rigidity of the model made these corrections negligible.

RESULTS AND DISCUSSION

The results presented in this report are for the semispan wing
unswept and swept back 45° for a Mach number range from 0.40 to 0.925,
and with the trailing—edge aileron deflected from 0° to 15°., The aver—
age Reynolds numbers for these tests are shown in figure 3.

The aerodynamic characteristics for the wing unswept and swept back
45° and with the control surfaces undeflscted are shown in figures L
through 6. Figure 4 shows the variatlon of 1ift coefficlent with angle
of attack; figure 5 shows the variation of drdg coefflicisnt with Mach
number; and figure 6 shows the variation of pitching-moment coefficient
with 1ift coefficient. The Mach pumber of 1ift and drag divergence for
the wing unswept was about 0.82 at low 1lift coefficlents. For the wing
swept back 459, the 1ift and drag divergence had not been reached at the
highest Mach number of the testa (0.925).

The results of the tuft atudies of the flow over the wing unswept
and swept back 45° are shown in figures 7 and 8. For the wing unswept,
the flow separated firat in the region of the inboard end of the tralling-
odge alleron and the separation progressively covered a largsr area as the
gtall was approached. The surface discontinuities caused by the clearance
gaps at the inboard ends of both ailerons probably contributed to the
gseparation in this area. For the wing swept back 459, the flow of air
began to separate flrst at the wing tip and, as the angle of attack was
Increased, the separatlon progressively covered a larger area. For both
the wing unswept and swept back 45°, the flow of alr over the wing root
wag parallel to the tunnel wall and showed nc indication of disturbance
by the gap at the tummel wall.

The increments of rolling-moment coefficlent due to deflsction of
the trailing—edge aileron for the wing umswept and swept back 45° are
shown 1n figure 9. The 1ncrement of rolling-moment coefflclent was
obtalned by the transfer of the rolling moment about the balance axie to
the model axls and the subtractiom of the rolling moment due to the wing
itself. Thia resulted in soms scatter; therefore, the rolling-momsnt
coefficients were falred to obtaln the data as presented. The variatioms

SN i
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of the effectivensss parameters CI’S’ Cm6 » and C}ZB of the trailing—edge

alleron with Mach number are shown 1n flgure 10. A positive alleron
deflection produced a negative Increment of rolling-moment coefficlent
(fig. 9(a)) at 0.875 Mach number and —:° angle of attack,and at 0.90 Mach
number and —4°, —2°, and 0° angle of attack. Figure 10 shows that, for
the unswept wilng, the alleron-effectliveness CIS Increased slightly with
increase in Mach number up to & Mach number of 0.77 (about the Mach number
of divergence}. Before the trailing edge was modified (reference 1), the-
ailleron decreased 1n effectiveness wlth Increase in Mach number above a
Mach pumber of 0.60. For the wing swept back 45° (fig. 9(b)), there was
a greater decrease In Increment of rolling-moment coefficient for the
trailing-edge alleron with increase 1n angle of attack at 0.40 Mach num-
ber than at higher Mach numbers. The parameters CLB’ Cms, and 015 are

shown to diverge at about the same Mach number (fig. 10). The Mach num—
ber of divergence, with the wing umswept, cccurred at about 0.80 Mech num—
ber for esch parameter, while the Mach number of divergence 1s not clearly
defined far the swept wing.

The hinge-moment coefficients for the trailing—edge aileron for the
wing unswept and swept back 450 are shown in figures 11 and 12. For the
wing unswept, the Mach number at which overbalance occurred for the
trailing-edge aileron was about 0.85 (fig. 11). This was an inerease of
about 0.15 Mech mumber over that Mach number at which overbalance of the
trailing—edge aileron occurred before the trailing edge of the wing was
modified (reference 1). Reducing the trailing—edge angle from 20.6° to
13.1° by the trailing—edge modification probably accounted for the major
part of this increase, with the reduction in wing thickness making some
contribution. For the wing swept back, the trailing—edge aileron never
became overbalanced at or beliow the highest test Mach number (0.925).

CONCLUDING REMARKS

From the tests of the lateral-control—development model wilth a modi—
fied NACA 0Q12-6L section it was foumd that, with a trailing-—edge angls
of about 13, the traillling-edge alleron remained effective and 4did not
become overbalsnced on the unswept wing up to at lsast the Mach number
of 1i1ft and drag divergence of the wing. With the wing swept back 45°,
this tralling—edge alleron remalned effectlve and dld not become over—
balanced up to the maximum Mach number of the tests (0.925).

Amss Aeronautical Isboratory,
Natlonal Advisory Committee for Aeromautics,
Moffett Field, Callfornia.
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TABLE I.— COCRDIFNATES IN PERCENT CHCORD

FOR THE MODIFIED NACA 0012-6L SECTION

Staetion Ordinate
o) 0
1.25 1.80
2.50 2.%0
5.00 3.12
T7.50 3.62

10.00 k.ot
15.00 k.58
20.00 k.98
25.00 5.25
30.00 5.41
35.00 5.50

-ho.00 5.48

45.00 5.37
50.00 5.18
55.00 4.88
60.00 .50
T0.00 3.45
80.00 2.32
90.00 1.21

100.00 0

L.E. radius: 1.45

T.E. radius: 10

W
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TABLE IT.— MODEL DIMENSIORS

NACA RM AQI2T

Dimension Unswept Swept-back
wing wing
Semispan, feet 7 5.327
Semlspan area, square feet 13.3 13.17
Aspect ratio (based on full span) T.37 4,31
Taper ratio 0.50 0.48
Mean aerodynamic chord, feet 2.01 2.68
Dlstance from root chord to mean
aerodynamic chord, feet. 3.05 2.27
Wing root chord parallel to the
air stream, feet 2.572 3.l
Projected tip chord parallel to
the alr stream, feet 1.286 . 1.657
Sweep of leading edge, degrees 2.41 .y
back back
Sweep of 0.229 wing-chord line, 0 45
degrees o back
Sweep of trailing edge, degroes 8.06 36.94
forwvard back
Sweep of leading—edge aileron | 0.95 45,65
hinge line, degrees back back
Sweep of trailing—edge alleron 5.30 4o.60
hinge line, degrees forward back
Wing thickness, based on chord
parallel to the ailr stream, 11.01 8.39
percent chord
Trailing-edge angle, in plane
parallel to the air stream, 13.12 - 10.0

degrees
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TABIE IT.— Concludsd

Dimension

Unswept
wing

Swept—back
wing

Section, perpendicular to the
0.229-wing—chord line (see

table I) :
Tralling—edge elleron:
Ratlo of aileron chord to wing
chord, perpendicular to Ths
0.229—=ring—chord Iine

Span along the hinge llne,
Teet

Root=mean—-square chord, feet

Areea, behind hinge line,
squarse feet

NACA 0012-64
modified by extend—
ing the treiling—

edge G—percent chord

0.2660

3.070
0.Lo7

1.136
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